360° Panoramas (again)

In my last post, already several months ago, I promised another 3D printer post. That is still coming. It’s half written. Make that a quarter written. I’ve been sidetracked, not to mention that my laptop computer bit the dust and I haven’t yet decided what to replace it with.

My first 360° panorama post was a little over a year ago, Feb. 4, 2020, where I discussed how 360° panoramas were made and showed one from Gates Pass near Tucson, AZ. My second post on panoramas was written on March 9, 2020, noting that 360° panoramas could be displayed on YouTube.

So, what’s new with panoramas?

First, 360° can be displayed on Flickr (I knew that, but had never tried it). Here’s my first panorama on Flickr. Flickr isn’t as good at displaying these as it could be – maybe it will improve in the future. The first problem I noticed is at the very bottom of the photo – directly below the camera. There’s some distortion there that shouldn’t be. Also, it is more difficult to zoom in and out with the mouse scroll wheel, as it usually scrolls the page instead. And it was difficult to go into full-screen mode, and once there I wasn’t always able to pan around the image.

It is possible to display panoramas interactively on WordPress, but only if I pay for a “professional” level. Since I don’t make any money from this site, I can’t really justify doing that. If you wish to see my photo(s) in a better viewer, take a look at it (them) in Roundme. This photo was taken a few days ago while on a cross-country ski outing to the top of Amabilis Mountain. 11+ miles and 2000’+ elevation gain, but the views were totally worth it! What a gorgeous day we had. Here are the rest of the photos I shot that day.

You can see all of the photos I’ve uploaded to Roundme by going to https://roundme.com/@garystebbins/tours.

What else is new?

All of the 360° panoramas I have posted in the past were shot by using my DSLR camera mounted to a tripod (or, in one case, handheld). The latest two were shot from a drone from tens of feet to several hundred feet above the ground.

I got my first done 3+ years ago, but it’s a bit too big to take on a backpack or cross-country ski trip. About a month ago I got a much smaller drone that is something I can take along with me. The drone itself weighs about 1/2 pound. I carried it in my backpack on my cross-country ski trip.

Phantom 4 Pro and DJI Mini 2 drones
Phantom 4 Pro and DJI Mini 2 drones

The larger drone in the photo above is a DJI Phantom 4 Pro, and the little guy is a DJI Mini 2. Both drones can automatically shoot a series of photos to be stitched into a 360° panorama photo. I then use the program PTGui to stitch the multiple images into a panorama image.

If you are curious, the panorama image is just a regular JPEG file, although it is stretched “a bit” at the top and bottom. As mentioned in my first post, it is exactly twice as wide as it is high – 360° wide and 180º high. The right and left edges join together in the panorama viewer, and the top and bottom edges are compressed to display as a single point – straight above the camera for the top edge and straight below for the bottom edge. Some additional metadata is added to the file so that the viewer program knows how to interpret the file. Here’s what the photo looks like when viewed without a panorama viewer.

Kachess Lake Overlook

There you have it – one more 360° blog post. Next (I hope) I’ll actually finish writing the 3D printer blog I promised a few months ago. Stay tuned!

Designing a Simple Part for 3D Printing

In a previous blog I told about my new 3D printer, and showed a few photos of it printing objects that I had found online. What else can you do with a 3D printer? You can design your own items to print, and those can be anything you can imagine. They might be purely decorative, or could be functional. Here’s something simple that is functional.

Julie has a basket that stands on four metal legs. Unfortunately, the little plastic feet that went on the legs have long since disappeared, and now they scratch the floor.

Simple solution: make some protective feet.

Fortunately, this really is a simple solution. I have some filament that I can print called TPU (thermoplastic polyeruthane) which is flexible but also tough. It sounds like the perfect material for this.

I measured the leg, and it was just a little under 19mm across. So I needed to design a foot that would fit over this 19mm square leg, hold up to some use, and stay on the leg. I decided to make it 2mm thick, as that seemed like a good thickness to not be too flimsy, yet not be overkill.

I use Fusion 360 from AutoDesk for most of my 3D designing. It’s free for hobbyists, and very capable. There are many other 3D design programs that would have worked, but that’s the one I’m most proficient with at this time. Maybe I’ll switch in the future. There is a great open source 3D design program I’m interested in playing with, but for this project I used Fusion 360

How would you go about designing a foot for this? It seems like a simple object, and it is. Just a cube with a hole in it. Like this:

I won’t go into any great detail about designing this, but will give some basic steps.

  • The leg is 19mm square, and I want the walls to be 2mm thick. 19mm + 2mm on each side makes 23mm. Draw a 23mm square.
  • Extrude that up 23mm, making a 23mm cube.
  • On the top surface of that cube, draw a centered 19mm square, leaving 2mm of the original cube on each side.
  • Extrude that down 19mm, subtracting this 19mm cube from the 23mm cube. That gives us the basic shape shown above. Note that by doing this we are left with a 4mm bottom. I could have reduced the height of the 23mm cube so that the sides and bottom were uniformly 2mm, but I figured a little extra material on the bottom would just add to the wear resistance.
  • Export this object as a 3D mesh, slice it, print it, and test it. I found that it fit, but was a bit loose, and probably would fall off over time.
  • Go back to Fusion 360 and tweak the internal (subtracted) cube to 18.5mm. If you’re paying attention (you were, weren’t you?), you’ll notice that the walls are now 2.25mm thick. I didn’t see any reason to go back and adjust this, although it would have been easy to do. At this point I believed I probably had a workable foot. In Fusion 360, it looked like this:
  • Kind of square-ish with sharp edges. Fusion 360 to the rescue. I “Filleted” (rounded) all edges, inside and out, with the exception of the bottom edges, which I “Chamfered” (cut at an angle). Why do the bottom different? Because 3D printers like mine have a problem with steep overhangs, and a fillet starts out with almost a 90° overhang, whereas a chamfer has only a 45° overhang and can be printed by most printers. Because this object is so small, it probably wouldn’t have made any real difference, but it’s a good habit to form when designing objects for 3D printing. I now have this, which looks a lot like the photo at the top of the page:

I think it looks good! Export it, Slice it, Print it. Test the fit…

It looks like a winner to me. It fits snugly, won’t fall off, and will protect the floor. The color? Just happens to be the color of TPU filament I have and a color Julie likes. Which is probably why I have this filament. 🙂

Watch for a future blog on designing a more complex object using a totally different 3D design program.

Milky Way Timelapse

[Originally published Nov. 14, 2020, minor update Nov. 4, 2022]

Something I’ve wanted to do for years is to create a timelapse video of the night sky star motion. I made it one of my goals for this year to accomplish that. I’ve been spending a lot of time in places that have terrible views of the night sky. Mostly, too much atmospheric haze and/or too much light pollution.

In July, when Comet Neowise was visible, we found a place a short drive away that had a pretty good night sky view, and was above much of the haze. We went there to try to get a good view, and maybe a photo or two, of the Comet.

Comet Neowise, July, 2020 (15 seconds at f/4.5, ISO 800, 135mm)

We found that this location was also good viewing of the Milky Way.

Milky Way (30 seconds at f/4.0, ISO 1600, 10mm)

It might have been a good time to try for a star timelapse with the Milky Way included, but it was late and I didn’t take the time to try it.

In September we camped at Red Bridge State Wayside in Oregon. The campground is a great place, but the sky is mostly blocked by beautiful Ponderosa pine trees. It does have a pretty good view of the sky from an area near the parking lot. I took my camera and tripod with the hope of getting some decent sky images.

Toward dark I set up on the grass looking over the parking lot and took several test exposures. I was shooting with my Pentax K-3 (crop-frame) camera with a Tamron 10-24mm lens. The exposure I settled on was 6 seconds at f/3.5, ISO 6400. I set the camera to shoot 500 photos, one every 20 seconds. I turned off in-camera noise reduction, thinking I could save battery and do it in Lightroom later.

The first photo was shot at about 9:20 pm, and the last photo just past midnight. I sat in a chair near the camera for the almost three hours it took, reading a book on my Kindle. Fortunately the night was relatively warm and getting cold wasn’t too much of a problem. I did get out of the chair a few times to do some jumping jacks to stay warm.

OK, now for what I did wrong.

  1. I judged the exposure by what the image looked like on the back of the camera. Remember, it was almost pitch black when I was doing this. The image looked great! The next morning I looked at the images. I couldn’t believe that all frames were totally black. How could I have done that? Then I realized they were underexposed so badly that I couldn’t see anything in normal light, but, viewed in a darkened room, there was some image there. Don’t judge the image exposure by what your eye sees when its almost totally dark out! Lightroom to the rescue (sort of).
  2. Turning off in-camera noise reduction was a mistake. the Pentax K-3 does quite well at keeping the noise down, but at ISO 6400, I really needed to let the camera do what it could. Again, Lightroom noise reduction helped (but I wouldn’t say it rescued me).

Once I had 500 RAW images, I imported them all into Lightroom and did what I could to adjust exposure and reduce noise. Then exported them all as JPEG files (a painfully slow process on my ancient laptop computer). Next I fired up Adobe After Effects, brought in all of the JPEG images, and created a 1080p video at 30 frames per second. 500 frames at 30 frames per second results in a video only 16-2/3 seconds long!

The resulting video has lots of noise and color changes due to the extreme exposure adjustments I made. But I think it’s acceptable for my first attempt. Next year (or maybe this winter) I’ll do this again and improve my results.

Here is my video for you to see:

Milky Way Timelapse